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Appendix A : Proof of Stability for Competitive Equilibrium 

 I characterize the transitional dynamics of the economy by generating an autonomous system 

for the equations of motion for c and d, where c is consumption per capita and d ≡ D/N is R&D 

difficulty per capita. During the transition, the labor market conditions, free-entry in R&D and optimal 

rent protection activity conditions must hold. I restrict attention to the domain d(t) > 0, and λ(1 – s)  > 

c(t) > 0 which ensures ι(t) > 0. Note from equation (13) that υυ / = D /D. Substituting for X(ω, t) 

from (21) into (7) using ι = ι(ω, t) and X = X(ω, t) and the measure one of industries, it follows that 

D /D = [(δ +δA)s / γd] + ι(μ – μA). Combining (19) with (21), wγX(t)/N(t) can be written as 

wγX(t)/N(t)= διaι(1 – φι)s/(1 + μι)γ . Solving equation (11) for r(t) and substituting the resulting 

expression into (4), using the expressions for υυ / and wγX(t)/N(t) immediately implies: 
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 where ι(c, d) = [1 – s – (c/λ)]/daι comes from (20). Observe that 
0cdc/dd

=
 is indeterminate. On the 

other hand, it is possible to draw some inferences on the movement of c around c = 0. More 

specifically, if μ – μA < 1 then d c /dc > 0, implying that starting from any point on = 0 curve, an 

increase in c leads to < 0. If μ – μ

c

c A  > 1 then d /dc remains ambiguous. c

 To find the equation of motion for d simply substitute ι(c, d) into = d/d D /D – n using the 

expression for D /D from above. This implies: 
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Observe that 
0ddc/dd

=
 < 0 and that d /dd < 0. Starting from any point on the =0 line, an 

increase in d renders <0, and an decrease in d renders > 0.  
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 Given the ambiguous relationships coming from =0, there are multiple possibilities. 

However, we know that in the relevant domain, the intersection of c =0 and =0 generates a unique 

point. Hence, using a graphical approach, it is straightforward to analyze the local stability of this non-

linear system. When c = 0 is upward sloping, the system has a stable node if d c /dc > 0 and a stable 

focus otherwise. When c = 0 is downward sloping, the system has a stable node independent of the 

sign of d /dc. This result holds regardless of = 0  being flatter or steeper than =0. Therefore, we 

conclude that the system is locally stable, exhibiting either a stable node or a stable focus. Figure 

Appendix A plots the demarcation curves =0 and d =0 under the benchmark values for the 

parameters. Observe that =0 is upward sloping and given μ – μ

c

d

c c d

c

c A < 1 it follows that d c /dc > 0. In 

this case, the system is saddle path stable. Numerical simulations imply that for a wide range of 

reasonable parameters the picture depicted in Figure Appendix A remains valid. 

 

Appendix B: Optimal R&D Policy: Solution, Uniqueness and Stability 

The social planner’s problem is to  
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subject to the state equation Φ = ι(t), d = [(δ + δA)s/γ] + (μ – μA)ι(t)d(t) – nd(t), the initial conditions 

Φ(0) = 0, d(0) = d0 > 0, and the control constraint, (1 – s)/aι d(t) ≥ ι(t) ≥ 0 for all t. The current value 

Hamiltonian for this problem can stated as: 

 H = Φ logλ + log[1 – s – aι dι] + θι + η[(δ + δA)s/γ + (μ – μA)ιd – nd]. 

For an interior solution, the first order condition is: 
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The costate equations are  
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I solve the optimal control problem for a balanced growth equilibrium in which all endogenous 

variables grow at constant rates (although not necessarily the same rate) and investment in R&D is 

positive ι > 0. It follows from (7) that for D /D to be constant, X(t)/D(t) and ι must be constant as well. 

Given /X = n by X (21), for X(t)/D(t) to be constant, D /D = n must hold. This in turn implies that d = 

D(t)/N(t) is constant. Substituting R(t) = ιD(t) into (20) implies that c must be a constant. Let gθ 

= . Constancy of gθθ / θ requires θ  be a constant, which in turn implies = 0. Let gθθ / η = ηη / . 

With ι and d constant, constancy of gη requires η be a constant, which in turn implies ηη / = 0. 

 Imposing θ = 0 and η = 0 on (A3) and (A4) implies θ = logλ/(ρ – n) and η = aιι/[1 – s – 

aιdι)(ι(μ  – μA) – ρ)]. Imposing = 0 yields d = (δ + δd A)s/[γ(n – ι(μ –μA))]. Note that (20) collapses 

to c/λ = 1 – s – aι dι. Substituting for θ, η and d into (A2) using c/λ = 1 – s – aι dι gives (31). The 

RDSO and LM conditions, given by (31) and (27) respectively, determine the optimal balanced growth 

levels ι~ and c~ . To see uniqueness, consider plotting the RDSO
 and LM curves in (ι, c) space 

restricting the domain to λ(1 – s) > c > 0 and  n/ (μ – μA)> ι > 0. For the RDSO equation: (d

> 0. Moreover, as ι → 0, c → (c

c/dι)

), 

⏐ SORD
 

0)SO = λsaι (ρ – n)( δ + δA)/ (logλ)nγ, and as ι → ιmax
 = n/ (μ – μA c 

→ ∞. For the LM equation: (dc/dι)⏐LM > 0. Furthermore, as ι → 0, c →λ (1 – s), and as ι → ιmax
 = n/ 

(μ – μA) , c → – ∞. Hence, for a unique equilibrium, the intercept of the LM curve must be strictly 

higher than that of the RD  curve: λ(1 – s) > (cCE
0)  ⇒ logλ > [saSO

ι (ρ – n)(δ + δA)] / [(1 – s)nγ]. 

Observe that this is quite similar to the uniqueness condition for competitive equilibrium which was 

λ(1 – s) > c0 ⇒  λ – 1 > [saι(1 – φι)(ρ – n)( δ + δA)]/[(1 – s)nγ].  

 To analyze stability, I invoke the transversality conditions: 
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  e 
∞→t

lim – (ρ – n)tθ(t)Φ(t) = 0. 

  e 
∞→t

lim – (ρ – n)t η(t)d(t)= 0. 

The transversality condition for θ and the costate equation imply that θ(t) = logλ(ρ  – n) for all t > 0 

[see Grossman and Helpman (1991), p. 71 and 103]. To see this formally, note that the solution for = 

(ρ – n)θ  – log λ is θ(t) = θ

θ

0e (ρ – n)t –[ logλ (e(ρ – n)t  – 1)]/ (ρ – n), where θ0 is the initial value for θ, 

which I assume exists but is unknown. Substituting this into the transversality condition implies  e 
∞→t

lim

– (ρ – n)tθ(t)Φ(t) ={θ0 – [log λ/(ρ – n)]} Φ(t) = 0. Given  Φ(t) = ∞, the only possible solution to this 

limit is θ

∞→t
lim

0 = log λ/(ρ – n). The solution to  then implies  θ

  
n
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−
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Substituting this into the transversality condition and using the L’Hopital’s rule implies that  e 
∞→t

lim – (ρ – 

n)tθ(t)Φ(t) = [log λ/(ρ - n)]ι(t)/∞, which equals zero for a finite level of ι(t) which follows from the 

constraint (1 – s)/aιd(t) ≥ ι(t) ≥ 0. 

 Substituting for θ(t) = log λ/(ρ - n) into (A2) gives: 
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where ∂ι(η,d)/∂η > 0, ∂ι(η,d)/∂d < 0. Substituting ι(η,d) and θ(t) into the costate equation for η and 

the equation of motion for d implies the following autonomous system: 
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At the steady-state for d~ > 0, we need  n - ι(μ - μA) > 0. So, we restrict attention the neighborhood of 

the steady-state where ι < n/(μ - μA) holds. Observe that dη /dη and thus 0
)d/dd(

=η
η  cannot be 

signed unambiguously. On the other hand, around the steady-state d /dd < 0 and d /dη > 0; thus, d d

0d)d/dd(
=

η > 0. In other words, d =0 is upward sloping, and starting from d =0 an increase 

(decrease) in d renders < 0, causing d to decrease (increase). Given that a unique steady-state 

equilibrium exists, we can examine all of the possibilities. First, when 

d

η  = 0 is upward sloping, η = 0 

may be steeper of flatter than = 0 and dd η /dη maybe positive or negative. Hence, with η =0 

upward sloping, there are four possibilities. It can be shown graphically that the system is saddle path 

stable in either case. Second, when η = 0 is downward sloping, dη /dη may be positive or negative. 

Thus, withη = 0 there are two possibilities. It can be shown graphically that the system is saddle-path 

stable when dη /dη >0 and exhibits a stable focus when dη /dη < 0.  

 

Appendix C: Identifying the Marginal Impact of Innovation  

 I now derive an expression for the welfare impact of a marginal innovation, following closely 

Grossman and Helpman (1991, pp.110-111) and Segerstrom (1998, pp. 1308-1309). I consider a 

situation in which an external agent becomes successful in innovating a higher quality product in 

industry ω at time t = 0. I then investigate the impact of this event on the welfare of all economic 

agents other than the external agent. To do this, I perturb the competitive equilibrium solution by dΦ 

at time t = 0 and investigate the impact on the discounted welfare for the period (0, ∞). I exclude the 

welfare of the external agent from the analysis because the free-entry in R&D condition implies that 

for any entrepreneur engaged in R&D, the R&D costs must be exactly balanced by the expected 

discounted rewards from R&D. Note that with the measure one of structurally-identical industries, it 

again follows that D(ω,t) = D(t), ι(ω,t) = ι(t), X(ω,t) = X(t) for all ω and t. 
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  Let E(t) = cent denote the aggregate consumer expenditure. Thus, (30) can be restated as: 
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To derive the welfare impact of an incremental innovation, I differentiate the above: 
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The first term equals logλ/(ρ – n) and capture the consumer surplus externality. The second term 

captures the business stealing and intertemporal R&D spillover externalities. The successful 

innovation by the external agent leads to the replacement of the incumbent firm in industry ω, 

resulting in a loss of stream of monopoly profits and lower incomes for its stockholders. In addition, 

the marginal innovation raises the difficulty of future research, resulting in more resources being 

diverted to innovation activities. Both of these effects lead to lower consumption expenditure, which 

are compounded by multiplier effects.  

 I now explicitly identify the business stealing and intertemporal R&D externalities. Note that 

aggregate expenditure equals aggregate income minus aggregate savings: 

 E(t) = [sw + (1 – s)]ent + π(t) – ιaιD(t), 

where the first term measures the labor income from specialized and non-specialized labor, the second 

term measures the aggregate profit income (excluding that of the external agent), and the third term 

measures the aggregate investment in R&D. Differentiating E(t) with respect to Φ and noting dΦ/dι = 

0 gives:  
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ΦΦ ι d
)t(dDa
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Recall that by combining (13) and (19), which hold both in and out of the steady-state, we have 

derived w = aιδ(1 – φι)ι/γ(1+μι) thus dw/dΦ = 0. Next, I consider dπ/dΦ. This term captures the 

decline in aggregate expenditure associated with the loss of profits in industry ω due to the marginal 
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innovation. In this model, the effective replacement rate takes into account the rent protection costs of 

incumbent firms and equals ι(1 +η(ι)). Since the arrival of innovations is governed by a Poisson 

process whose intensity equals ι, the arrival of effective replacement incidents is also governed by a 

Poisson process whose intensity equals ι(1 +η(ι)). It follows from the properties of the Poisson 

process that the effective duration of monopoly power is exponentially distributed with parameter ι(1 

+η(ι)). In the event of no further innovation between time 0 and time t— that is, between the time the 

external agent innovates and the time that signifies the current period—with probability e – ι(1 +η(ι))t, no 

further innovation occurs and the economy forfeits monopoly profits at time t of amount (λ – 1)E(t)/λ. 

In addition there is a multiplier effect because the loss of profits in industry ω will induce a fall in 

aggregate expenditure, which will translate into lower incomes and expenditures in other industries. 

The combined change in total profits equals: 
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Next, consider ιaι 
Φd

))t(D(d , which captures the expenditure decline associated with the higher 

resource requirement in R&D due to marginal innovation. The first step is to find the solution to the 

differential equation (7). Note that D(ω,t) = D(t), ι(ω,t) = ι(t) and X(ω,t) = X(t) for all ω and t.  In 

addition, XA(t)= X(t) and ιA(t)= ι(t). The solution to (7) is then given by: 
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δδ , where D0 is the level of R&D 

difficulty at time 0. Differentiating this gives: 
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Substituting the expressions for dπ/dΦ and dD(t)/dΦ into the dE(t)/dΦ expression and collecting terms 

gives:  
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Substituting the above expression now into dU/dΦ using E = [λaιD(t)(ρ + ι(1 + η(ι)) – n)]/(λ – 1), 

which follows from (25) and (13), and calculating the integral implies: 
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 To evaluate the integral term, I invoke the steady-state properties of the model as in 

Segerstrom (1998, p. 1309). At the steady-state ι(t)= ι, Φ(t)= ιt and D(t) =D0ent. Substituting these 

into the integral term and evaluating gives (33). 

 

Appendix E: Effects of parameter changes on R&D policy  

 We can use the simulation results to determine each parameter’s qualitative impact on 

spillovers that works indirectly by altering the innovation rate ι. Recall that these were ambiguous and 

involved multiple effects. The one analytical result we had was that an increase in ι decreases the BS 

effect. The simulations resolve the ambiguity on the IS effect, revealing that an increase in ι decreases 

the IS effect [recall that there were two competing forces on IS: a higher ι reduces the BS component 

of the IS effect and at the same time it increases the spillover factor in the IS effect]. 32 Thus, I can 

state the following 

Lemma 3: Numerical simulations imply that an increase in ι reduces the negative externalities BS 

and IS and thereby calls for a rise in φιSO . Thus, any parameter change that leads to a larger 

innovation rate ι  pushes the R&D policy toward subsidy. 

 Armed with Lemma 3 we can now shed further light on the simulations using the results from 

Proposition 1 and the analytical exercise in the previous section. 

E.1. An increase in λ 

                                                 
32 The derivations are available from the author upon request. The results hold for a wide range of parameters. 
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 A higher λ leads to an increase in ι (Proposition 1), which indirectly reduces the size of the 

negative externalities (Lemma 3) and thus calls for an increase in φιSO. These must be weighed against 

the direct effects though. A larger λ increases both the CS effect (a positive externality) and the BS 

effect (a negative externality) and at the same exerts an ambiguous effect on IS effect (a negative 

externality). Simulations imply that the welfare gains are negative when λ is of small and large 

magnitude, and positive when λ is of medium magnitude. 

E. 2. An increase in μ 

 A higher μ leads to an decrease in ι (Proposition 1), which indirectly increases the size of the 

negative externalities (Lemma 3) and thus calls for reduced R&D subsidy. In addition, there are the 

direct effects. A larger μ increases the BS effect and the IS effect, both of which are negative 

externalities. Hence the direct effects also call for reduced R&D subsidies. Therefore we can conclude 

that an increase in μ would imply a fall in φιSO .    

D.3. An increase in μA

 A higher μA leads to an increase in ι (Proposition 1), which indirectly reduces the size of the 

negative externalities (Lemma 3) and thus calls for an increase in R&D subsidy. In addition, the direct 

effects complement this impact. A larger μA decreases the BS and IS effects, both of which are 

negative externalities. Therefore we can conclude that an increase in μ would imply an increase in 

φιSO.    

E.4. An increase in δA

 A higher δA leads to an decrease in ι (Proposition 1), which indirectly increases the size of the 

negative externalities (Lemma 3) and thus calls for a reduction in R&D subsidy. Again there are also 

the direct effects that reinforce this mechanism. A larger δA increases the magnitudes of negative 

externalities the BS and IS effects. Therefore we can conclude that an increase in δA would imply a fall 
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in the optimal R&D subsidy rate. The effects for δ are the same, simply working in the opposite 

direction. 

 It is straightforward to determine the optimal R&D policy effects associated with the rest of 

the parameters using Proposition 1, Lemma 3 and (33). Table 1 and Figure 2 summarize the resulting 

outcomes.  




